Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling.

نویسندگان

  • P J Marie
  • F Debiais
  • E Haÿ
چکیده

The formation of cranial bone requires the differentiation of osteoblasts from undifferentiated mesenchymal cells. The balance between osteoblast recruitment, proliferation, differentiation and apoptosis in sutures between cranial bones is essential for calvarial bone formation. The mechanisms that control human osteoblasts during normal calvarial bone formation and premature suture ossification (craniosynostosis) begin to be understood. Our studies of the human calvaria osteoblast phenotype and calvarial bone formation showed that premature fusion of the sutures in non-syndromic and syndromic (Apert syndrome) craniosynostoses results from precocious osteoblast differentiation. We showed that Fibroblast Growth Factor-2 (FGF-2), FGF receptor-2 (FGFR-2) and Bone Morphogenetic Protein-2 (BMP-2), three essential factors involved in skeletal development, regulate the proliferation, differentiation and apoptosis in human calvaria osteoblasts. Mechanisms that induce the differentiated osteoblast phenotype have also been identified in human calvaria osteoblasts. We demonstrated the implication of molecules (N-cadherin, Il-1) and signaling pathways (src, PKC) by which these local factors modulate human calvaria osteoblast differentiation and apoptosis. The identification of these essential signaling molecules provides new insights into the pathways controlling the differentiated osteoblast phenotype, and leads to a more comprehensive view in the mechanisms that control normal and premature cranial ossification in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of FGFR2-IIIC Signaling via FGF-2 Ligand for Advancing GCT Stromal Cell Differentiation

Giant cell tumor of bone (GCT) is an aggressive bone tumor consisting of multinucleated osteoclast-like giant cells and proliferating osteoblast-like stromal cells. The signaling mechanism involved in GCT stromal cell osteoblastic differentiation is not fully understood. Previous work in our lab reported that GCT stromal cells express high levels of TWIST1, a master transcription factor in skel...

متن کامل

BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation

Bone morphogenetic proteins (BMPs) regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involve...

متن کامل

The role of FGF-2 and BMP-2 in regulation of gene induction, cell proliferation and mineralization

INTRODUCTION The difficulty in re-growing and mineralizing new bone after severe fracture can result in loss of ambulation or limb. Here we describe the sequential roles of FGF-2 in inducing gene expression, cell growth and BMP-2 in gene expression and mineralization of bone. MATERIALS AND METHODS The regulation of gene expression was determined using real-time RTPCR (qRTPCR) and cell prolife...

متن کامل

Fgf and Tgfbeta Signalling in an In-vitro Model of Craniosynostosis

Fibroblast Growth Factor (FGF) and Transforming Growth Factor beta (TGFbeta) are key regulators of bone development. Constitutively activating mutations of FGF Receptors (FGFR) 1-3 result in craniosynostosis, premature fusion of cranial sutures. The aim of this thesis was to determine how FGF signalling is impaired in osteoblasts with the mutation FGFR2-C278F, known to induce craniosnostosis an...

متن کامل

Bone morphogenetic protein is required for fibroblast growth factor 2-dependent later-stage osteoblastic differentiation in cranial suture cells.

BACKGROUND Understanding the pathophysiological process of calvarial bones development is important for the treatments on relative diseases such as craniosynostosis. While, the role of fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) and how they interacted in osteoblast differentiation remain unclear. METHODS we digested bone fragments around the coronal and sagittal sutur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Histology and histopathology

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2002